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Classification of Skateboard Tricks based on Deep
Learning and Video Recordings

Patrick Juriga

Abstract—Skateboarding, an exhilarating and dynamic sport,
has gained immense popularity worldwide. However, despite its
growing popularity, the sport faces several challenges, including
the subjective nature of judging and the lack of objective perfor-
mance measures. Nevertheless, with advancements in computer
vision and deep learning, there is an opportunity to automate
and enhance this process. This study explores the application
of convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) for skateboard trick classification based on
video recordings. The aim is to develop a system that is feasible
of classifying skateboard tricks, overcoming challenges such as
trick diversity and variations in execution styles. An experiment
was conducted to gather video recordings of attempts at skate-
board tricks, aiming to extract valuable information about their
outcomes, in which a dataset was created comprising 439 recorded
tricks. To extract robust features from the video recordings, the
YOLOv8 model is employed. The dataset included labelled videos
of skateboard tricks, enabling supervised training. CNNs were
used for feature extraction, while RNNs were employed to capture
temporal dependencies for trick identification. With the chosen
neural network architecture, an accuracy of 36,36% was achieved
in classifying skateboard tricks. Based on the results obtained,
the feasibility of classifying skateboard tricks based on video
recordings and deep learning has not been confirmed. However,
it is important to note that this outcome may be attributed
to the limited training data used in the study. With a larger
and more diverse training dataset, there is potential for further
advancements in data-driven analysis using CNN and RNN.

Index Terms—Skateboarding, Trick Classification, Deep learn-
ing, Convolutional Neural Network, Recurrent Neural Network,
Computer Vision

I . I N T R O D U C T I O N

SKATEBOARDING has become an increasingly popular
sport in recent years, with millions of enthusiasts world-

wide. Moreover, with the inclusion of skateboarding in the
Olympic Games with its premiere at the Tokyo Summer Games
in 2021 the sport has gained even more recognition and
attention. Alongside this surge in popularity there has been
a growing trend of integrating technology into sports, resulting
in a more data-driven approach to understanding athletic perfor-
mance. However, the sport faces several challenges including
the subjective nature of judging and the lack of objective
performance measures.

In many freestyle sports as skateboarding is one of it, perfor-
mances and judgement tend to focus on subjective parameters,
which can be as basic as the overall ‘style factor’ of an
execution. This fact has so far made it difficult to gain directly
obtained, objective statements about the athletes’ performances
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(such as a goal or no goal in football). For instance a particular
trick’s execution can vary widely depending on factors such as
the skater’s individual style and the difficulty of the manoeuver.
While judges can assess a skater’s performance subjectively, it’s
challenging to quantify it objectively. Digital motion analysis
can provide a solution to this challenge by complementing
subjective measures with objective performance measures,
offering unique feedback to competitors, judges and spectators.

In the field of action recognition, computer-aided evaluation
holds significant promise as a valuable tool. However, to
effectively analyze the data and recognize actions, it is crucial
to first acquire the relevant data. This necessitates the use of
some form of monitoring device. Common approaches involve
the utilization of wearable sensors in combination with machine
learning techniques. Hollaus et al. [1] developed a catch detec-
tion system for American football using a wearable sensor and
machine learning. Groh et al.. [2] employed a wearable sensor
to classify tricks in freestyle snowboarding. The team led by
Brock [3] utilized wearable sensors to assess motion style
errors in ski jumping based on machine learning methods. In
skateboarding several systems have been developed that employ
wearable sensors, often incorporating inertial measurement
units (IMUs) attached to the skateboard, along with machine
learning techniques [4], [5]. Another application of IMUs, with
a focus on exergames where physical effort from the user is
required, has also been explored [6]. Anlauff et al. [7] not
only focused on the classification aspect but also provided
visualizations of the performed tricks. Abdulah et al. [8] took
a different approach by using transfer learning to classify tricks
by using pre-trained models.

The major drawback from all these systems is that they
need a sensor which is mounted onto the skateboard. This
can be resolved by using instead of a sensor mere video
recordings for the classification part. Thereby the athlete is not
restricted or hindered in his activity by the recording system.
Hollaus et al. [9] developed an automatic catch recognition
in American football based on video and audio recordings. In
this way they show the possibility in the classification in the
sport action recognition. Because of this the study aims to
explore the possibility of classifying skateboard tricks using
video recordings. Unlike systems that require cameras to be
attached to the athletes, the approach used in this research does
not hinder their performance. Nevertheless, some drawbacks
in contrast to the wearable sensor approach also exist for this
video-system. One of them would be the fact that it requires
continuous camera coverage of the entire skate park or street
skateboarding area, which is not always feasible.

In the field of sport action recognition the analysis relies
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on machine learning algorithms [10]. However, a significant
challenge arises from the large size of these datasets, making
traditional techniques inefficient for processing. Consequently,
there is a need for time series classification (TSC) algorithms
that can effectively process video files containing athletes’ trick
attempts. These algorithms can efficiently handle the data and
detect temporal patterns. Recent studies by Karim et al. [11],
[12] have demonstrated the effectiveness of multivariate long
short-term memory fully convolutional networks (MLSTM-
FCNs) for classifying sequences of images. Gated recurrent
units (GRUs) have shown comparable performance to long
short-term memory (LSTM) networks, as demonstrated by
Chung et al . [13]. Elaysed et al. [14] built upon this work and
proposed a GRU-FCN approach that yielded promising results.
Furthermore, recent research in multivariate and univariate TSC
has shown great potential using various approaches [15]–[19].

Although the importance of time series classification for
classification in videos is evident, recent advances in the
field of object detection have showcased promising results.
Redmon et al. [20] introduced the YOLO model for real-time
object detection, which outperforms other detection methods.
Additionally, the current version, YOLOv8 [21], [22], also
enables the estimation of human pose. Training neural net-
works has also seen advancements, with adaptive learning rate
schedulers providing significant improvements in performance
for various architectures. Smith’s proposed work on cycling
learning rate has demonstrated its effectiveness [23]. Moreover,
the technique of transfer learning, which involves transferring
knowledge from pre-trained models to train on custom datasets,
has become a promising area in machine learning [24]. Apply-
ing transfer learning to the YOLOv8 model, Reis et al. [25]
achieved real-time detection of 40 different flying objects.

The primary objective of this paper is to explore the
feasibility of identifying skateboard tricks using video data
and deep learning techniques. To accomplish this goal a large
and diverse dataset of skate trick videos will be developed for
training and testing the neural network. The results obtained
from the neural network will be analyzed , and the performance
will be interpreted to identify its strengths, weaknesses and
potential areas for future enhancement.

I I . M AT E R I A L A N D M E T H O D S

This section outlines the materials and methods used in the
study. Firstly, the experimental design is presented, followed by
the data acquisition phase. Next, the process of labelling and
data processing is explained. The neuronal network needs some
input parameters, extracted as features from the videos, in order
to identify the tricks. The feature extraction process is then
detailed. Finally, the model architecture, training procedures
and evaluation process used in the research are shown.

A. Design of Experiment

The primary objective of the experiment was to collect
a varied collection of video recordings featuring different
skateboard tricks performed by numerous athletes. This data
is later on processed and used to train a neural network for
the trick identification. The athletes were required to perform

five different tricks as follows: Ollie, Fakie Ollie, Backside
(BS) Pop Shove-it, Frontside (FS) 180 and Kickflip. The
selection of these tricks was due to their representation of the
most fundamental movements a skater can perform. The Fakie
Ollie is just slightly different from the Ollie but was included
nevertheless to see if this small difference concerning the stance
could be detected by the neural network. In addition, failed
attempts at trick execution were classified in the sixth category
No-Trick. To ensure the dataset was diverse, participants in
the experiment were given minimal restrictions regarding data
acquisition. The primary requirement for participants was
to perform the trick in a clean manner, without excessive
sketchiness. Apart from this condition, participants had the
freedom to execute the trick according to their individual style
and approach, allowing for a wide range of variations in the
acquired data. No distinction was made between regular or
goofy stance directions.

In order to achieve the design goal of the experiment a total
of five participants were recruited to perform trick attempts
under different conditions. All participants were male, aged
between 22 and 27. Although they were skilled in performing
the required range of tricks, they still are considered amateurs.
Moreover, the recording sessions were conducted at two distinct
locations. The study underwent a comprehensive review and
received approval from the ethics board of the Management
Center Innsbruck. Prior to participating, all participants were
fully informed about the study’s objectives, potential risks
involved and how their data would be handled. Each participant
signed a consent form, which is available upon request.

The experimental setup consisted of two cameras from
different perspectives at a flat location, where the athletes were
able to execute the tricks. The recording system was placed
to record the participants from two different angles. One view
was frontal to the athlete, the other view was parallel to the
sagittal plane of the athlete, i.e. sideways. One condition during
the recording of an attempt was that only one person and one
skateboard are visible in the field of view.

B. Data Acquisition

In order to meet the requirements of the experiment, careful
consideration was given to select a suitable camera for video
recording. These requirements were specifically defined to
record the entire body movements of the athlete and the
skateboard throughout the execution of tricks. From a camera
perspective, it was crucial to determine the minimum frame
rate, recording time and resolution to ensure accurate data
capture.

The trick attempt was defined to begin when the skateboard
leaves the ground and to end with a clean landing, when the
athlete is back on the skateboard and in contact with the ground.
This resulted in a relevant time frame of 2 seconds for each
trick attempt. Notably, the attempts for each trick category were
recorded in a single continuous shot during a data recording
session, allowing participants to focus solely on their respective
tricks.

To ensure high temporal resolution for capturing the fast-
paced movements involved, a camera capable of recording at a
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frame rate of 60 frames per second (FPS) was carefully selected.
This approach allowed for an experimental determination of
the minimum frame rate rather than relying on assumptions.
The chosen camera, the GoPro Hero 9, was configured with a
resolution of 1920 px× 1080 px.

C. Labelling and Data Processing

After the completion of the data acquisition process, the next
step involved labelling the recorded data. Initially, the recorded
data consisted of continuous video recordings capturing various
attempts at different trick categories from the data recording
sessions. Next, the recorded footage was resized using the
OpenCV scaling function to a resolution 640 px × 360 px.
This resolution was specifically chosen to meet the input size
requirements of the YOLOv8 model, enhancing the efficiency
and effectiveness of data processing and ensuring compatibility
with the YOLOv8 model.

Subsequently, the recorded footage was manually divided
into clips of two seconds each, with each clip containing a
single attempted trick. This segmentation process was carried
out in Python using a combination of PyGame and OpenCV
libraries. Each file was assigned a name that incorporated the
location name, the trick name, a counter to ensure uniqueness
and the camera perspective from which they were recorded.

After the segmentation process, a crucial step was carried out
to clean the dataset and to ensure its quality and suitability for
subsequent analysis. This involved removing video clips that
did not meet specific criteria, ensuring that only relevant and
reliable data remained. Clips that feature multiple persons or
skateboards in view, tricks performed out of sight or instances
where a clean landing was not achieved were identified and
eliminated from the dataset.

This resulted in a recorded dataset, in a volume of 439
clips, which formed the basis for training the neural networks.
An important metric for training is the ratio of attempts per
class. In table I this ratio between the six classes can be seen.
The BS Pop Shove-it class has the largest percentage ratio of

Table I: Trick Attempts per Class

Class Amount Ratio in %

Ollie 72 16,40
Fakie Ollie 75 17,08
BS Pop Shove-it 84 22,87
FS 180 70 15,95
Kickflip 58 13,21
No-Trick 80 18,22

22,87%, while the Kickflip class has the lowest percentage
ratio of 13,21%. This imbalance could potentially impact the
performance of a deep learning model trained on this dataset, as
the model may become biased toward predicting the majority
classes.

To increase the dataset’s size and diversity augmentation
techniques to the video data were applied. The different tech-
niques were implemented by using the OpenCV and imgaug
libraries in Python. Following techniques were applied: a blur
filter with a kernel size of [5, 5], gaussian noise with a mean of

0 and a standard deviation of 0.1, histogram equalization on
the Y channel at YUV color space, horizontal flipping, random
rotation by an angle within the range of −3◦ to 3◦, random
translations in both the x and y directions within the range of
−0,05% to 0,05%. By augmenting video data, overfitting of
the network can be avoided and enhance the network’s ability
to generalize well to unseen video recordings.

Furthermore, all network performances were judged by
using separate test dataset, which was based on the raw
dataset. Moreover, to study the impact of the camera per-
spective and if even only one perspective is necessary, dif-
ferent combinations of the camera views were implemented
and acquired for training. The raw dataset was splitted into
subset for training (67,8%), validation (17,2%) and testing
(15,0%). To ensure a balanced distribution of classes in the
training, validation and testing subsets, the dataset was split
using the StratifiedShuffleSplit function from the
scikit-learn library. This function provides the advantage
of maintaining a proportional representation of each class
across all splits. All other generated dataset were splitted into
subset for training (80%) and validation (20%).

D. Feature Extraction

In order to identify skateboard tricks from a video recording,
additional information had to be provided as input for a
neural network. This information was extracted in the form
of various features. Following features were extracted to serve
as input parameters: bounding box of the detected skateboard,
specific keypoints of the human pose and specific keypoints
from the skateboard. To obtain these features a pre-trained
network called YOLOv8 [21] was used. In order to standardize
the distribution of the features, a normalization technique
was applied using the StandardScaler class from the
scikit-learn library.

YOLOv8 includes a pre-trained object detection model
capable of detecting 80 different classes [21]. In the context
of skateboard detection, the relevant class ID for a detected
skateboard was 36. The information about the bounding box
was stored in the format xywh, where x and y represented
the center of the box, whereas w and h denoted the width and
height of the box. These informations were stored and used
input parameters for the network.

As for the detection of the keypoints from the human
pose, the YOLOv8 provides a model which identified 17
keypoints distributed across various body parts. Keypoints 0
to 4 correspond to facial features, while keypoints 5 to 10
represent shoulders, elbows and wrists. The set of keypoints 11
to 16 relates to the hips, knees and ankles. Since the movements
of arms and face were not considered as crucial and tend to
change significantly during trick execution, these features were
excluded from further analysis. Instead, the keypoints 11 to
16 associated with hips, knees and ankles were utilized for
additional examination.

In the specific context of studying the movement of a
skateboard, a model that can detect and track relevant key-
points on the skateboard was developed. By identifying these
keypoints, such as trucks and wheels on the skateboard, it
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bacame possible to gather more precise information about
its rotation and movement. To achieve skateboard keypoint
detection, the approach of transfer learning with YOLOv8 was
employed. First, a dataset of single frames from the video
recordings where a trick execution was done generated. This
dataset sets the base for manaully annotating the keypoints of
the skateboard. To achieve this the online annotation platform
CVAT was used. In this case, seven keypoints were annotated
and placed consistently in the same order on each skateboard
image. The order was truck at the nose side, truck at the tail side,
midpoint of the deck, left wheel of the truck at the nose side,
right wheel of the truck at the nose side, left wheel of the truck
at the tail side and right wheel of the truck at the tail side. Also
the bounding box enclosing the skateboard had to be annotated.
Furthermore, the dataset was augmented by using rotation and
translation techniques. Subsequently, this augmented dataset
was divided into subsets, with 70% allocated for training and
30% for validation purposes. The YOLOv8 pose model was
then trained using this newly generated dataset, employing the
built-in trainer function [21]. As for the hyperparameters, the
default values of the YOLOv8 train function were utilized.

E. Neural Network Architecture and Implementation

In the study, the network aims to identify unique features
in data sequences to classify them as the given skate tricks.
Feature extraction is a common challenge in computer vision
and signal processing domains, and it can be addressed by
utilizing CNNs for extracting spatial features and RNNs for
capturing temporal dependencies. The setup for this project
involved utilizing the Python programming language in com-
bination with the PyTorch framework on an NVIDIA GPU
for accelerated computation. To handle the data effectively, the
PyTorch DataLoader and Dataset classes were employed. These
classes facilitated access to the samples during the training
process.

To handle sequential data and perform classification tasks,
the input data for the neural network consisted of a sequence of
features captured over time. In this particular work, the shape of
the input tensor x was determined as [sequence_length
x num_features]. The sequence length corresponded to
the number of frames in the video clip, which was dependent
on the FPS and duration of the video clip (2 seconds in
this case). As an example, if the clip has a frame rate of
30 FPS, the sequence length would be 60 frames. The number
of features was determined by the bounding box coordinates,
the coordinates of keypoints from the pose estimation and the
skateboard pose estimation, resulting in a total of 30 features. If
only one camera perspective was used, the number of features
was 30. However, if both camera perspectives were utilized, the
number of features was doubled. The batch size was configured
as 6. Moreover, dimension shuffle was also applied to the input
data. If the sequence length was smaller than the number of
features, the input tensor was transposed to following shape
[num_features x sequence_length].

To address this type of data, several models have been
implemented, notably the multivariate time series classification
approach using LSTM cells as proposed by Karim et al. [12]

and the use of GRU cells by Elsayed et al. [14]. The
multivariate network architecture consists of two blocks that
process the input separately: the LSTM or GRU block and
the FCN block. Figure 1 provides a detailed illustration of the
architecture.

Input Parameters

Conv1D: 128

BN + ReLU

Squeeze and Excite

Global Pooling

Dimension Shuf�e

(Attention) LSTM / GRU

Concat

Log SoftMax

Dropout

Dropout

Conv1D: 265

BN + ReLU

Squeeze and Excite

Dropout

Conv1D: 128

BN + ReLU

Dropout

Fully Connected

Figure 1: The structure of the developed neural network for multi-
variate time series classification.

The FCN block in the network architecture consists of
three temporal convolutional blocks, which serve as a feature
extractor. These blocks were adapted from the original FCN
block proposed by Wang, Yan and Oates in 2017 [26]. Each
FCN block contains a convolutional layer with specific filter
numbers: 128, 256 and 128. The kernel sizes for these convo-
lutional layers were set to 8, 5 and 3. The ReLU activation
function follows the batch normalization and then a dropout
with a probability of 0,1 was applied. Additionally, the first
two convolutional blocks were concluded with a squeeze-and-
excite block, having a reduction ratio of 16. The final temporal
convolutional block was succeeded by a global average pooling
layer.

Regarding the LSTM or GRU block, it undergoes a dimen-
sion shuffle layer, which transposes the temporal dimension of
the input data. Afterward, the input was passed through the
LSTM/GRU block. The block was set up with the following
configurations: a hidden size of 512, the number of layers was
fixed at 1, and the output size was defined as 128. An attention
layer [12], [27] can be optionally applied. Subsequently, a
dropout of 0,4 was applied. Finally, these two paths were
concatenated and fed into a fully connected layer, followed

https://www.cvat.ai/
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by the application of the Log SoftMax function. Considering
the optional attention layer, four network architectures have
been implemented: MLSTM-FCN, MGRU-FCN, AMLSTM-
FCN and AMGRU-FCN.

During the optimization process of the models and their
hyperparameters, an empirical approach was adopted. The
optimization was conducted in two stages, with the primary
focus on the training dataset without the use of data duplication
to reduce computation time. In the first stage, the model
structure was optimized. The next stage involved fine-tuning
the hyperparameters. Hyperparameters refer to the settings and
configurations of the model that were not learned from the data,
such as batch size, regularization parameters and optimization
algorithms.

For the multi-class classification task, the chosen loss func-
tion was cross entropy loss. As optimization algorithm Adam
was employed. The number of epochs was set to 2000. To
prevent overfitting and reduce training time, an early stopping
configuration was implemented. In this case, the patience was
set to 50 epochs and a minimum improvement of the validation
loss of 1 · 10−3 per epoch was required to continue training.
During the training process, the learning rate was adjusted after
each epoch using a cycling learning rate approach proposed by
Smith in 2017 [23]. This approach involved cyclically varying
the learning rate within a specific range to potentially improve
the optimization process. In this study, the cycling learning rate
approach was implemented with an initially higher learning
rate of 1 · 10−5 and a minimum learning rate of 1 · 10−8.

To determine the best performing model an evaluation
process was applied. The evaluation process began by assessing
the performance of different models on the raw dataset,
considering various combinations of perspectives such as side
view and front view. This evaluation helped identify the best
performing model among the options. Once the best model was
determined, its performance was further analyzed by examining
its ability to handle lower FPS scenarios. This analysis provided
insights into how the model performs when the video footage
has a reduced frame rate.

Furthermore, the evaluation included assessing the model’s
performance on different training datasets using video augmen-
tation techniques. This involved applying various transforma-
tions and modifications to the training videos to augment the
dataset. By evaluating the model’s performance on these aug-
mented datasets, its robustness and generalization capabilities
had been assessed.

I I I . R E S U LT S

In this section the results from the keypoint detector for the
skateboard and from the trick identifications achieved through
the proposed work are presented.

A. Performance of the Skateboard Keypoint Detector

The performance evaluation of skateboard keypoint detector
involved analyzing visual representations of the predicted
images in comparison to their corresponding manually anno-
tated images. Several key points have been noted during this
evaluation:

• Close Keypoint Matches: The detected keypoints mostly
closely match the manually annotated keypoints.

• Difficulty with Wheel Locations: However, the model en-
counters challenges in accurately determining the location
or position of the skateboard wheels, particularly when
the skateboard deck is facing towards the camera or the
ground.

B. Performance of the Skateboard Trick Classification

In this section the results obtained from the evaluation
process of the developed neural network models for skateboard
trick classification are presented.

The initial evaluation compares the performance of different
neural network models, including MLSTM-FCN, AMLSTM-
FCN, MGRU-FCN and AMGRU-FCN, on the raw dataset
with a frame rate of 30 FPS. Table II presents the accuracy
scores achieved by each model with different combinations
of perspectives (side and front view). Based on the accuracy

Table II: Comparison of trick classification accuracy with the different
combinations of perspectives (side and front view) among the different
models on the raw test dataset at 30 FPS.

Model Side view Front view Accuracy in %

MLSTM-FCN yes - 24,24
MLSTM-FCN - yes 16,67
MLSTM-FCN yes yes 25,70
MGRU-FCN yes - 25,76
MGRU-FCN - yes 19,70
MGRU-FCN yes yes 27,27
AMLSTM-FCN yes - 27,27
AMLSTM-FCN - yes 21,21
AMLSTM-FCN yes yes 22,73
AMGRU-FCN yes - 21,21
AMGRU-FCN - yes 16,67
AMGRU-FCN yes yes 22.73

scores across all models and views, the MGRU-FCN model
demonstrated the highest accuracy of 27,27% when both
side and front views were considered together. Although the
AMLSTM-FCN model performed slightly better in the side
view with an accuracy of 27,27% compared to the MGRU-
FCN model’s accuracy of 25,76%, the difference is relatively
small. Therefore, the MGRU-FCN model was chosen for
further analysis.

In the next step the impact of the number of frames used for
training on the accuracy of the model was tested. The MGRU-
FCN model was trained using different frame rates: 30 FPS, 20
FPS, 15 FPS and 10 FPS. Table III displays the accuracy scores
achieved on the test dataset for each combination of frame rate
and perspective. Based on these results, it can be observed that
the MGRU-FCN model consistently achieved higher accuracy
when considering the side view only compared to combination
of side and front view. With focus on the side view alone, the
model’s accuracy remained relatively stable across different
FPS conditions, ranging from 24,24% to 31,82%. Lowering
the number of images improved the accuracy of the model.
On the other hand, when both the side and front views were
considered, the accuracy varies more significantly, ranging from
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Table III: Comparison of trick classification accuracy with the MGRU-
FCN model at different frame rates and perspectives.

Model View FPS Accuracy in %

MGRU-FCN Side 30 27,27
MGRU-FCN Side & Front 30 27,27
MGRU-FCN Side 20 24,24
MGRU-FCN Side & Front 20 27,27
MGRU-FCN Side 15 28,79
MGRU-FCN Side & Front 15 21,21
MGRU-FCN Side 10 31,82
MGRU-FCN Side & Front 10 22,73

21,21% to 27,27%. Therefore, if the side view is the primary
factor of interest and the use of the front view is not essential,
selecting the MGRU-FCN model with the side view at 10 FPS
would be a suitable choice, as it achieved the highest accuracy
of 31,82% among the available options.

In order to improve the model’s robustness and general-
ization, augmented training datasets were utilized. The per-
formance of the MGRU-FCN model at 10 FPS was then
evaluated using these augmented datasets to assess the impact
of specific augmentations on classification accuracy. The
achieved accuracies by the model on different training datasets
are presented in Table IV. From the results, it was observed that

Table IV: Achieved accuracies of trick classification on the test dataset,
using different combinations of the training dataset.

Raw
Data

Blur Noise His-
togram

Horizon-
tal Flip

Ro-
ta-

tion

Trans-
lation

Accu-
racy in

%

Yes - - - - - - 31,82
Yes - - - Yes - - 28,79
Yes Yes Yes Yes - - - 33,33
Yes - - Yes Yes - - 27,27
Yes - - - - Yes Yes 34,85
Yes - - - Yes Yes Yes 36,36
Yes Yes Yes Yes Yes Yes Yes 36,36

the highest accuracy of 36,36% was obtained when using the
combination of raw data, horizontal flip, rotation and translation,
as well as when all augmentations were combined. On the
other hand, the training dataset with histogram equalization
and horizontal flip yielded the lowest accuracy. The second-
best accuracy of 34,85% was achieved when combining the
raw data with rotation and translation. The dataset including
blur, noise and histogram equalization obtained an accuracy of
33,33%.

Based on these results, it is recommended to select the
MGRU-FCN model trained with the augmented dataset con-
sisting of raw data, horizontal flip, rotation and translation
for further analysis, as it achieved the highest accuracy of
36,36%. Adding the additional augmentations of blur, noise
and histogram equalization only increased computational cost
without improving accuracy.

The initial accuracy of the MGRU-FCN model on the
raw dataset at 30 FPS with a side view perspective was

27,27%. Through the subsequent analysis and improvements,
the accuracy of the model was increased to 36,36%.

Table V provides an evaluation of the MGRU-FCN model
with the side view perspective at 10 FPS, trained using the
augmented dataset consisting of raw data, horizontal flip,
rotation and translation. The evaluation was based on precision,

Table V: MGRU-FCN model evaluation based on the test dataset at
10 FPS with side view perspective and the augmented training dataset.

Class Precision
in %

Recall in
%

F1 Measure
in %

Number of
Data

Ollie 27 27 27 11
Fakie Ollie 18 18 18 11
BS Pop Shove-it 57 92 71 13
FS 180 0 0 0 10
Kickflip 55 67 60 9
No-Trick 12 8 10 12

recall and F1 measures for each class in the trick identification
task. The performance of the model varied across different
classes.

For the Ollie class, the precision, recall and F1 measure
were all 27%, indicating poor model prediction. The model
correctly predicted only 27% of the instances in this class.
Similarly, for the Fakie Ollie class, the precision, recall and F1
measure were all 18%, indicating poor model prediction. The
model correctly predicted only 18% of the instances in this
class. For the BS Pop Shove-it class, the precision was 57%,
indicating moderate model predictions. However, the recall was
92%, suggesting that the model was able to correctly identify
a high proportion of instances belonging to this class. The
precision, recall and F1 measure for the FS 180 class were all
0%, indicating that the model did not predicted any instances
correctly for this class. The Kickflip class had a precision of
55%, indicating somewhat accurate model predictions. The
recall was 67%, suggesting that the model could identify a
relatively high proportion of instances belonging to this class.
For the No-Trick class, the precision was 12%, indicating that
the model’s predictions for this class were not very accurate.
The recall was 8%, suggesting that the model struggled to
identify instances belonging to this class.

I V. D I S C U S S I O N

The goal of this work is to develop and analyze a neural
network for the classification of skateboard tricks based on
video recordings. The objectives of the study are to develop
a large and diverse dataset of skate trick videos for training
and testing the neural network and to analyze the results to
interpret the performance of the model. The aim is to identify
the factors that influence the performance of the model and
provide insights for future improvements.

To achieve the first objective a dataset consisting of skate-
board trick videos was created. The dataset comprises 439
clips belonging to the following classes: Ollie, Fakie Ollie,
Kickflip, Backside Pop Shove-it, Frontside 180 and No-Trick.
The collection process involved gathering videos from two
distinct locations. There were no specific restrictions placed on
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the participants while executing the tricks, except for requiring
a clean landing. This approach aimed to introduce diversity into
the dataset. However, it is important to note that the limited
number of samples in the dataset might not encompass the
full range of variation in skater’s style and filming conditions.
This limitation could potentially impact the model’s ability to
generalize effectively to unseen data and may introduce biases
or constraints on its performance. To address these limitations,
it would be beneficial to gather a larger and more diverse
dataset.

The neural networks are using video recording features as
inputs. The YOLOv8 model was used to extract skateboard
bounding box and human pose keypoints. For complex maneu-
vers like a Kickflip, a custom keypoint detector based on trans-
fer learning from YOLOv8 pose model was developed. This
detector showed promise in identifying skateboard keypoints
accurately. However, challenges remained when the skateboard
faced the camera or the ground. To improve performance,
a larger and more diverse dataset can be used, including
different angles and locations. This will enhance the detector’s
robustness and accuracy. Additionally, exploring the option of
setting visibility flags for keypoints in the annotation platform
could offer valuable insights and improvements to the process.

The execution of a skate trick is time-dependent, requiring
time series classification to identify the trick by processing the
data from the trick attempt. For this task a neural network ar-
chitecture combining RNN and FCN has been chosen. Several
models were developed, including MLSTM-FCN, AMLSTM-
FCN, MGRU-FCN and AMGRU-FCN. An evaluation process
was applied to identify factors influencing the performance
of these models, comparing them for further selection. The
models were evaluated based on their performance using the
raw dataset, considering different views (side and front) and
analyzing their accuracy scores. Based on the evaluation results,
the MGRU-FCN model consistently achieved higher accuracy
scores compared to the other models, especially when the
side view was considered. Consequently, the MGRU-FCN
model with the side view was selected for further investiga-
tions. To understand how different frames per second affect
the performance of the model, the MGRU-FCN model was
evaluated under varying FPS settings. The results indicated
that the model’s accuracy remained relatively stable across
different FPS conditions. However, it was observed that the
reduction of the FPS slightly improved the accuracy of the
model. To enhance the model’s robustness and generalization
capabilities, augmented training datasets were utilized. The
evaluation of these augmented datasets revealed the importance
of specific augmentations in improving accuracy. Notably, the
combination of raw data with horizontal flip, rotation and
translation resulted in the highest accuracy of 36,36%.

The analysis of the neural network’s performance has
highlighted both strengths and weaknesses. It suggests that
using only the side view rather than a combination of side and
front view can simplify the data acquisition process since only
one camera is needed. The placement of the front view camera
presented certain difficulties, as it was challenging for a rider to
perform tricks while riding towards this camera, resulting in a
higher variability in the rider’s path in the video recording. On

the other hand, the side view camera captured the rider passing
by, leading to a more consistent drive-through direction in the
video recording. Additionally, reducing the frames per second
not only decreased computational costs but also improved the
model’s performance. However, despite these adjustments, the
developed system’s classification accuracy remained low and
unreliable, both with and without augmentation techniques.
The results suggest that there is potential for deep learning
to classify skateboard tricks, as some tricks have a higher
recall value, indicating the model’s ability to correctly identify
a significant proportion of samples for those classes.

However, further investigations are required to address the
current limitations and improve the model’s performance. The
existing dataset and system might not be sufficient to achieve
reliable classification accuracy and additional data collection
and model refinement are needed to enhance the classification
performance for this set of skate tricks.

To enhance the data collection process, it is recommended
to improve the participant recruitment process. The subjective
perception of the author of a certain resistance to technology
within the skateboard scene may have made it difficult to
find willing participants for this study. Exploring alternative
methods of participant recruitment beyond relying solely on the
social media profile of the local skate club, may help generate
a more diverse dataset.

Regarding the neural network architecture, alternative mod-
els could be considered for the classification task. In this
study only the combination of CNN and RNN models was
tested. However, for the next evaluation, exploring other archi-
tectures such as transformer-based models, ensemble models
(combining transformer-based with CNN and RNN) or 3D
CNNs might be beneficial. These architectures have shown
promise in various applications and could potentially improve
the accuracy and performance of the classification task.

Another aspect to explore is the relevance of the features
used in the classification task and the potential for improvement
by incorporating more features. The current set of features
might contain misleading information, which could affect the
classification accuracy. Conversely, it is also possible that the
selected features do not provide enough insight to effectively
differentiate between various skate tricks. Additionally, if the
dataset is sufficiently large, an alternative approach worth
investigating is training a network directly on the raw videos
without extracting features. This could potentially provide a
more comprehensive understanding of the skateboard tricks
and lead to improved classification results.

Automation of data processing and labelling could be a
valuable improvement. For example, in the side view perspec-
tive, identifying the maximum height of a trick could be used
to automatically cut the video into clips centered around the
peak moment of the trick. Such automation could lead to
the development of a program that reads the video, extracts
features from each clip and saves them into a single file for
further analysis. This automation process could streamline data
processing and facilitate the creation of a larger dataset for
training and evaluation.
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V. C O N C L U S I O N

In conclusion, this research aimed to classify skateboard
tricks using deep learning algorithms, specifically CNNs and
RNNs. With an accuracy of 36,36% the feasibility of the
classification task based on video data is not given, which
could be solved through a larger and more diverse dataset.

The study introduced a custom keypoint detector for accurate
skateboard movement analysis during tricks. While effective,
challenges remained, especially when the skateboard deck was
facing towards the camera. Overcoming these challenges may
involve using a more diverse dataset and exploring visibility
flags in the annotation process.

The deep learning architecture chosen, MGRU-FCN, demon-
strated promise in time series classification, capturing temporal
dependencies and the sequential nature of trick execution. This
model outperformed alternative architectures, particularly when
considering the side view camera. Classifying side view data
may be beneficial in future data acquisition as it requires fewer
cameras and provides a more consistent and standardized view
of the rider’s path.

Although some skate tricks achieved higher recall values,
indicating the model’s ability to correctly identify significant
samples, the overall classification accuracy remained a sig-
nificant challenge. To address this, further investigation into
alternative feature sets, transformer-based models, ensemble
models or 3D CNNs is recommended. Additionally, investi-
gating the relevance of features, direct training on raw videos
and automating data preprocessing could contribute to a more
comprehensive understanding of skateboard tricks and further
enhance the classification results.
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